ppv课 发表于 2014-4-2 22:51:00

大数据分析有哪些误解

深圳飞博远创www.ppvke.com的大数据培训课程的江老师说道大数据的主要类型:第一类是记录数据,即记录的汇集,其中每个记录包含固定的数据字段(或属性)。比如,计量经济学中的横截面数据,文档数据,事务数据或购物篮数据;第二类是基于图形的数据,包括带有数据对象之间联系的数据和具有图形对象的数据,比如网页链接、化合物结构;第三类是有序数据,包括时序数据、序列数据、空间数据。比如,宏观经济指标序列,金融价格序列,基因组序列,词或字母的序列,同一时点上从不同的地理位置收集的气象数据(温度、湿度、气压等)。
大数据分析的主要任务:第一类是预测任务,目标是根据某些属性的值,预测另外一些特定属性的值。被预测的属性一般称为目标变量或因变量,被用来做预测的属性称为解释变量和自变量;第二类是描述任务,目标是导出概括数据中潜在联系的模式,包括相关、趋势、聚类、轨迹和异常等。描述性任务通常是探查性的,常常需要后处理技术来验证和解释结果。具体可分为分类、回归、关联分析、聚类分析、推荐系统、异常检测、链接分析等几种。
大数据分析与计量经济学的差异与联系
  大数据分析与计量经济学既有差异又有联系。
  两者的差异表现为:第一,两者处理的数据类型不同。计量经济学处理结构型数据,主要包括横截面数据、时间序列数据和面板数据,一般能以excel表格的形式呈现,而且表格的行列都有清晰的经济学含义,有一致统计口径。大数据分析能处理很多非结构型数据,包括文档、视频、图像,一般难以用excel表格的形式呈现。但这些非结构型数据需要量化后才能分析,在量化中一般伴随着信息损失。
  第二,两者分析重点不同。计量经济学分析的重点是假设检验,核心理念与波普的证伪主义非常接近。计量经济学就是通过假设检验,来证伪或支持(注意不是证实)某个经济理论。相比之下,大数据分析更具实用主义色彩。预测在大数据分析中占有很大比重。对预测效果的后评估也是大数据分析的重要内容。
大数据分析与计量经济学的内在联系也不容忽视。在对随机问题的处理上,它们没有本质差别,基础理论都是概率论和数理统计。

暖卿雪傲 发表于 2014-7-16 10:24:33

好。推荐王道海 资深企业运营、项目管理、流程管理专家、信产部认证培训讲师。
荣誉:信产部信息化管理师资质认证讲师、CPMP国家项目管理认证讲师。
教育背景:北京理工大学 、项目管理PMP资质认证 、六西格玛绿带。
页: [1]
查看完整版本: 大数据分析有哪些误解