不过,在那之后五边形追踪行动似乎陷入了低谷,直到上月,华盛顿大学的凯西·曼(Casey Mann)、詹尼弗·麦克劳德(Jennifer McLoud)与大卫·冯·达尔尤(David Von Derau)再次将人们的目光吸引到了五边形镶嵌问题上。
“我们利用计算机穷举法检验了一个基数很大但有限的五边形集合,”凯西说,“我们对这个小家伙的发现感到非常高兴而又有些意外。”
大多数数学家对五边形镶嵌仍感兴趣,因为五边形是镶嵌问题中唯一没有被研究透彻的图形。
“可镶嵌凸五边形的分类难题很容易描述,连小孩都可以理解,但100年以来一直没有出现完美的解答,”凯西说,“这个难题也有着丰富的历史,它与著名的‘希尔伯特23问’中的第18个问题有关。”
五边形镶嵌的潜在应用价值也给对它进行的研究注入了一些活力。“我们在自然界看到的很多结构——从水晶到病毒——都是由一些小的基本单元构成的,这些基本单元被几何学与力学支配着,从而统一起来形成一个大的结构。”他补充道。
“我很难肯定地预测是否还会在新的五边形被发现,不过至今还没有证据表明没有其他五边形了,所有我们可能还能找到几种。但是随着计算机穷举的继续,收集的数据会越来越多,我们有望做出最后的预测。”(稿件来源:环球科学 撰文:Alex Bellos 翻译:李轩) |